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1. The Hasse principle

Let X be a projective variety over the rational numbers Q. In order to study the
rational points of X, we can embed Q in each of its completions, which are the real
numbers R and the p-adic numbers Qp for every prime p. This gives an embedding
of X(Q) into X(R) and into each of the X(Qp). It follows that a necessary condition
for X(Q) to be non-empty is that X(R) and each X(Qp) be non-empty.

This necessary condition is useful because it is a condition that can be checked
algorithmically.

1.1. Testing local solubility. First consider testing, for a single prime p, whether
X has any Qp-points. For any fixed r, the finite set X(Z/prZ) can be enumerated.
Hensel’s Lemma states that, as soon as we can find a point of X(Z/prZ) at which
the derivatives of the defining polynomials of X satisfy certain conditions, then
there exists a point of X(Qp). It is not immediately clear that this leads to a finite
procedure for checking solubility, since we might end up looking at X(Z/prZ) for
arbitrarily large r. However, it is easy to prove that failure to find a point satisfying
the conditions of Hensel’s Lemma leads to a sequence converging to a singular point
of X(Qp). If X is smooth, this gives a contradiction. If X is not smooth, then we
can inductively look first for points on the singular subvariety of X, and then for
smooth points on X. In fact, it is possible to give an a priori bound for the largest
r which is needed: see [11].

Remark 1.1. Sophisticated geometers will have noticed that, to talk about points
of X(Z/pZ), we need to first fix a model of X over Z, or at least over Zp. However,
in this section we are thinking of X as being given explicitly in projective space by
equations, so it already comes with a choice of model (given by taking the Zariski
closure of X ⊂ PnQ in PnZ). We can therefore talk about points of X over any ring
without worrying.
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We will make a lot of use of the following well-known special case of Hensel’s
Lemma: if X has a smooth point over Fp = Z/pZ, then X has a Zp-point. More
generally, we have the following.

Theorem 1.2. Let k be a number field, v a place of k, Ov the ring of integers in
kv and Fv the residue field at v. Let X be a scheme over Ov. If P ∈ X(Fv) is a
smooth point of X ×Ov

Fv, then P lifts to a point of X(Ov).

Testing solubility of a variety over R is also a finite process: see [2, Theo-
rem 13.13].

To show that testing solubility at all places of Q (that is, in R and in each Qp)
is a finite procedure requires a little more work. We would like to show that, for
all primes p above an explicitly determined bound, X(Qp) is automatically non-
empty. The main ingredient is the famous theorem of Lang and Weil on the number
of points of a variety over a finite field.

Theorem 1.3 (Lang–Weil [13]). There exists a constant A(n, d, r) such that, for
any finite field F of order q and any geometrically irreducible variety V ⊂ PnF of
dimension r and degree d, we have

|#V (F)− qr| < (d− 1)(d− 2)qr−
1
2 +A(n, d, r)qr−1.

In particular, the theorem shows that there is a bound B, depending only on
n, r and d, such that q > B implies V (F) 6= ∅. This bound can be explicitly
determined (though doing so in general may be difficult). If V is smooth, then the
Weil conjectures give a more detailed means to estimate the number of points on
V .

The hypothesis of geometric irreducibility is essential: take p > 2, let a be any
non-square in Fp and consider the variety x2− ay2 ⊂ A2

Fp
. This only has the single

point (0, 0), no matter how large p is. However, it is not geometrically irreducible
since the equation factorises over Fp2 .

Returning to our variety X over Q, Theorem 1.3 shows that, for p sufficiently
large, X has a smooth Fp-point. (If X is smooth, then so is X × Fp for p outside
an explicitly computable set, so this is clear; otherwise, applying the theorem to
the singular subscheme of X shows that the number of singular points grows less
quickly than the number of smooth points, so again existence of a smooth point
is assured for p sufficiently large.) By Theorem 1.2, X(Qp) is non-empty for p
sufficiently large. Since only finitely many primes are left, testing solubility in all
Qp is seen to be a finite procedure.

The results described above generalise without problem to all number fields.

1.2. Adelic points. For ease of notation, we now define the set of adelic points of
a variety over a number field. Let k be a number field and write Ωk for the set of
places of k. For each v ∈ Ωk, let kv be the completion of k at v. If v is finite, let
Ov be the ring of integers in kv; if v is infinite, set Ov = kv. The ring of adèles of
k is the ring

Ak = {(Pv) ∈
∏
v∈Ωk

| Pv ∈ Ov for almost all v}.

(Here “almost all” means “all but finitely many”.) The ring Ak comes with the
restricted product topology.

Let X be a variety over k. Since Ak is a ring containing k, we can consider the
set X(Ak), and it turns out to be equal to

X(Ak) = {(Pv) ∈
∏
v∈Ωk

X(kv) | Pv ∈ X(Ov) for almost all v}.
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(Here we don’t actually need to fix a model over the ring of integers of k, since any
two models coincide at all but finitely many places.)

Each X(kv) comes equipped with a topology: locally, X(kv) can be embedded
in affine space An(kv) = knv , so acquires a topology from that on kv, and one can
show that this does not depend on the choice of embedding. The topology on
X(Ak) is then the restricted product topology with respect to the subsets X(Ov).
Explicitly, a basis of open sets is given by sets U of the following form: take a
finite set S ⊂ Ωk, and for each v ∈ S take an open set Uv ∈ X(kv); then let
U =

∏
v∈S Uv ×

∏
v/∈S X(Ov).

If X is projective, then we have X(Ov) = X(kv): this is either an application
of the valuative criterion of properness, or else the observation that any point of
Pn(kv) can be scaled to have coordinates lying in Ov. Hence, when X is projective,
we have X(Ak) =

∏
vX(kv), and the topology coincides with the product topology.

1.3. The Hasse principle. Let X be a projective variety over a number field k.
We have seen that existence of points over all completions of k, that is, the condition
X(Ak) 6= ∅, is a necessary condition for the existence of a k-rational point on X,
and indeed a condition that can be checked by a finite procedure. Sometimes this
condition is also a sufficient condition, as in the following famous theorem of Hasse
and Minkowski. See [20, Chapter IV] for a treatment over Q.

Theorem 1.4 (Hasse–Minkowski). Let X ⊂ Pnk be a smooth hypersurface defined
by one equation of degree 2. Then we have

X(Ak) 6= ∅ ⇐⇒ X(k) 6= ∅.

This theorem means that testing whether such an X admits a k-rational point
is a finite process. (But note that the theorem does not help you actually find a
rational point.)

More generally, we define the Hasse principle as follows.

Definition 1.5. Let X be a projective variety over a number field k. We say that
X satisfies the Hasse principle if the implication

X(Ak) 6= ∅ =⇒ X(k) 6= ∅
holds.

This is frequently a more useful concept in the context of a class of varieties
rather than for a single variety. For example, Theorem 1.4 states that quadrics of
any dimension satisfy the Hasse principle.

Other varieties known to satisfy the Hasse principle include Severi–Brauer va-
rieties (that is, X such that X ×k k̄ ∼= Pn

k̄
for some n) and del Pezzo surfaces of

degree at least 5.
However, not all varieties do satisfy the Hasse principle. The following coun-

terexample to the Hasse principle was discovered by Lind [14] and Reichardt [18].

Example 1.6 (Lind, Reichardt). Let C be the smooth projective curve over Q
defined in weighted projective space P(1, 2, 1) by the equation

(1.1) 2Y 2 = X4 − 17Z4.

Then C(AQ) is non-empty, but C(Q) is empty.

Proof. That C(AQ) is non-empty is left as an exercise. We prove that C has no
rational points.

If there were a rational point on C, then without loss of generality we could write
it as (x, y, z) with x, y, z integers and x, z coprime. What primes may divide y? If
q > 2 is prime and q | y, then we have x4 ≡ 17z4 (mod q) and so 17 is a square
modulo q. By quadratic reciprocity, this means that q is a square modulo 17.
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Since 2 and −1 are also squares modulo 17, we deduce that y is a product of
squares modulo 17 and thus y is a square modulo 17. We can therefore write y ≡ y2

0

(mod 17). Substituting into (1.1), we get 2y4
0 ≡ x4 (mod 17) and hence that 2 is

a fourth power modulo 17. But this is not true, and so there can be no rational
solution. �

Most of the arguments in this proof are entirely local arguments: they involve
making deductions about X(Qp) for various places p. But there is one step which
is not local, and that is the use of quadratic reciprocity. The theorem of quadratic
reciprocity gives a link between behaviour at one prime and behaviour at another
prime, and thus shows that the possible locations of our hypothetical rational so-
lution in the various X(Qp) are not independent of each other.

Further counterexamples to the Hasse principle were discovered during the mid-
dle of the 20th century, including:

• a smooth diagonal cubic curve (Selmer [19], 1951);
• a smooth cubic surface (Swinnerton-Dyer [24], 1962), disproving a conjec-

ture of Mordell that such surfaces satisfied the Hasse principle;
• a smooth diagonal cubic surface (Cassels–Guy [7], 1966);
• a smooth del Pezzo surface of degree 4 (Birch–Swinnerton-Dyer [3], 1975).

In each case, the proof that the variety has no rational points used some form of
reciprocity law.

2. The Brauer–Manin obstruction

In 1970, Manin [16] put forward a construction that explains all counterexamples
to the Hasse principle known at that time. This is what we now call the Brauer–
Manin obstruction to the Hasse principle. (At the time, it was not known that
the Brauer–Manin obstruction explained the counterexample of Cassels–Guy men-
tioned above, but this was later shown to be true by Colliot-Thélène–Kanevsky–
Sansuc [8].) More recently, further counterexamples to the Hasse principle have
been found that are not explained by the Brauer–Manin obstruction, first by Sko-
robogatov [23]. Despite this, the Brauer–Manin obstruction remains a central area
of interest in the study of rational points, because it is conjectured to be the only
obstruction to the Hasse principle for certain large classes of varieties. Specifically,
Colliot-Thélène has conjectured this to be the case for geometrically rationally con-
nected varieties. Moreover, on many varieties the Brauer–Manin obstruction gives
an explicitly computable obstruction to the Hasse principle. On varieties for which
it is known to be the only obstruction, this therefore gives a finite procedure for
testing the existence of a rational point.

2.1. Brauer groups of fields. To define the Brauer–Manin obstruction, we first
need to discuss Brauer groups of fields and of varieties. An excellent reference for
this material is the book by Gille and Szamuely [10]. The Brauer group of a field
classifies certain objects called central simple algebras.

Definition 2.1. Let K be a field. A central simple algebra over K is a finite-
dimensional K-algebra A that is central (its centre is K) and simple (it has no
two-sided ideals apart from A and 0).

Remark 2.2. Our algebras always contain a 1. The K-multiples of 1 form a copy
of K inside the algebra, so asking that the centre be equal to K does make sense.

Such an object is defined by a finite amount of data. Indeed, a finite-dimensional
K-algebra is a finite-dimensional K-vector space V together with a K-linear mul-
tiplication law; to define the multiplication law, it is enough to choose a basis and
specify the product of each pair of basis vectors.
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Example 2.3. If K is any field and n ≥ 1 is an integer, then the matrix algebra
Mn(K) is a central simple algebra over K of dimension n2.

Example 2.4. Take K = R. Hamilton’s quaternion algebra H is defined to be the
4-dimensional R-algebra with basis 1, i, j, k and multiplication given by i2 = j2 =
k2 = −1, ij = −ji = k. The algebra H is a central simple algebra over R, and
indeed a division algebra.

Example 2.5. Let K be any field of characteristic 6= 2, and let a, b be two non-zero
elements of K. We can define the (generalised) quaternion algebra (a, b)K to be
the 4-dimensional vector space over K with basis 1, i, j, k and multiplication given
by i2 = a, j2 = b and ij = −ji = k. This is a central simple algebra over K; it is
either a division algebra, or isomorphic to M2(K).

We note here several properties (not all obvious) of quaternion algebras over a
field that we will make use of later. Assume that K has characteristic different
from 2 and let a, b, c be non-zero elements of K.

• The algebras (a, b)K and (b, a)K are isomorphic.
• The algebras (a, b)K and (a, bc2)K are isomorphic.
• More generally, if c lies in the norm group NK(

√
a)/K K(

√
a)×, then (a, b)K

and (a, bc) are isomorphic.
• The algebra (a, b)K is isomorphic to M2(K) if and only if b lies in the norm

group NK(
√
a)/K K(

√
a)×.

If A,B are two central simple algebras over a field K, then the tensor product
A⊗K B is also a central simple algebra over K. In order to classify central simple
algebras over K, we first put an equivalence relation on them that makes the matrix
algebras “trivial”.

Definition 2.6. Two central simple algebras A,B over a field K are equivalent if
there exist integers m,n > 0 such that the algebras A⊗KMm(K) and B⊗KMn(K)
are isomorphic.

If A is an algebra over K, then the opposite algebra Aop is defined to have the
same underlying vector space as A, but with multiplication defined in the opposite
order. There is a homomorphism A⊗K Aop → EndK(A) defined by sending x⊗ y
to the endomorphism a 7→ xay, and it turns out that A is a central simple algebra
if and only if this homomorphism is an isomorphism.

We are now in a position to define the Brauer group of a field.

Definition 2.7. Let K be a field. The Brauer group of K, written BrK, is the
group of equivalence classes of central simple algebras over K, with the operation
of tensor product over K.

Since EndK(A) is a matrix algebra, the discussion above shows that the class of
Aop is the inverse of the class of A.

If K → L is a homomorphism of fields and A is a central simple algebra over
K, then A ⊗K L is a central simple algebra over L; this gives a homomorphism
BrK → BrL, making Br into a covariant functor.

We state without proof several standard facts about the Brauer groups of various
fields.

• If K is separably closed, then BrK is trivial.
• If F is a finite field, then BrF is trivial.
• BrR has order 2; the trivial class is {Mn(R) : n ∈ N} and the non-trivial

class is {Mn(H) : n ∈ N}.
• The class of a quaternion algebra over K is always of order 2 in BrK, but

not every class of order 2 contains a quaternion algebra. (For example, the
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tensor product of two quaternion algebras is not necessarily equivalent to
a quaternion algebra.)

• If K is a finite extension of Qp, then there is a canonical isomorphism
inv : BrK → Q/Z called the Hasse invariant map. In particular, for the
quaternion algebra (a, b)K , we have

inv(a, b)K =

{
0 if b ∈ NK(

√
a)/K K(

√
a)×;

1
2 otherwise.

• Let k be a number field. For each finite place v of k, let invv : Br kv → Q/Z
be the Hasse invariant map. Moreover, for each infinite place v, define
invv : Br kv → Q/Z be the unique injective homomorphism (with image of
order 2 if v is a real place, and trivial image if v is a complex place). Then
the sequence

(2.1) 0→ Br k →
⊕
v∈Ωk

Br kv

∑
v invv−−−−−→ Q/Z→ 0

is a short exact sequence. This is the celebrated theorem of Albert–Brauer–
Hasse–Noether. Implicit in here is the statement that, for A ∈ Br k, the
image of A in Br kv is zero for all but finitely many v. Note that it really
matters that we use the canonical map invv and not just any isomorphism
Br kv → Q/Z.

For any field K with separable closure Ks, it can be shown that BrK is canon-
ically isomorphic to the Galois cohomology group H2(K, (Ks)×).

The exact sequence (2.1), when restricted to classes of quaternion algebras, is
equivalent to quadratic reciprocity. In general, (2.1) can be seen as a generalised
reciprocity law, and it is this on which the Brauer–Manin obstruction is based.

2.2. The Brauer–Manin obstruction. In the next section, we will define the
Brauer group of a variety. For now, we use a vague notion. Let X be a variety over
a number field k. An element of the Brauer group BrX will be a “family of Brauer
group elements” parametrised by X. More specifically, given A ∈ BrX and a point
P ∈ X(L) for some field L ⊃ K, one can “evaluate” A at P to obtain A(P ) ∈ BrL.
This property is enough to define the obstruction.

Fix an element A ∈ BrX. Given an adelic point (Pv) ∈ X(Ak), we can evaluate
A at each Pv separately and obtain an element of

∏
v Br kv. This turns out to lie

in
⊕

v Br kv, and so we can use the exact sequence (2.1) to test whether it might
come from Br k. If not, then (Pv) certain does not come from a point P ∈ X(k).

Putting this idea into action gives a commutative diagram as follows.

X(k) X(Ak)

Br k
⊕

v Br kv Q/Z.

A A ∑
v invv

We define a subset X(Ak)A of the adelic points of X, consisting of those which
pass this test. Specifically, define

X(Ak)A = {(Pv) ∈ X(Ak) |
∑
v

invv A(Pv) = 0}

and

X(Ak)Br =
⋂

A∈BrX

X(Ak)A

= {(Pv) ∈ X(Ak) |
∑
v

invv A(Pv) = 0 for all A ∈ BrX}.
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The diagram above shows that the diagonal image of X(k) in X(Ak) is contained
in X(Ak)Br. It follows that, if X(Ak)Br is empty, then there are no rational points
on X.

Definition 2.8. If X(Ak) is non-empty but X(Ak)Br is empty, we say that there
is a Brauer–Manin obstruction to the Hasse principle on X.

It can be shown that the map X(kv) → Br kv given by an element of BrX is
continuous; so X(Ak)Br is a closed subset of X(Ak).

2.3. Weak approximation. We conclude this section by mentioning the related
idea of weak approximation. Using the diagonal map, we can think of X(k) as a
subset of X(Ak).

Definition 2.9. Let X be a variety over the number field k. Then X satisfies weak
approximation if X(k) is dense in

∏
vX(kv).

It is helpful to unpack this definition using the definition of the product topology.
A basic open set U ⊂

∏
vX(kv) is given by a finite set S ⊂ Ωk and open sets

Uv ⊂ X(kv) for v ∈ S; then U is the product
∏
v∈S Uv ×

∏
v/∈S X(kv). That X(k)

be dense in
∏
vX(kv) is the same as that every such basic open set contain a

point of X(k). An open set of X(kv), for v a finite place, is defined by congruence
conditions; so saying that X satisfies weak approximation is a little like a “Chinese
remainder theorem” for rational points of X: given congruence conditions at finitely
many places, there exists a point of X(k) satisfying those conditions.

The Brauer–Manin obstruction can also obstruct weak approximation on a pro-
jective variety X. Given that X(Ak)Br is closed in X(Ak), it is impossible for X
to satisfy weak approximation as soon as X(Ak)Br is not the whole of X(Ak).

Definition 2.10. If X(Ak) is non-empty and X(Ak)Br is not the whole of X(Ak),
then we say there is a Brauer–Manin obstruction to weak approximation on X.

3. Understanding Brauer groups

3.1. The Brauer group of a variety. Let X be a smooth, projective, geomet-
rically irreducible variety over a number field k. Given a central simple algebra A
over the function field k(X), we can try to evaluate A at points of X in the obvious
way.

Example 3.1. Take X = A1
Q, with function field Q(t), and A = (−1, t)Q(t). For

any a 6= 0, substituting t = a gives a quaternion algebra (−1, a)Q over Q. For
a = 0, this does not work.

Example 3.2. Let X be the elliptic curve over Q defined by the Weierstrass
equation

y2 = (x− e1)(x− e2)(x− e3)

and let A be the quaternion algebra (3, x − e1)Q(X). Evaluating at any point of
X(Q) apart from (e1, 0) gives a well-defined quaternion algebra over Q, but it looks
as if we cannot evaluate A at the point (e1, 0). However, dividing x − e1 by y2

shows that A is isomorphic to the algebra (3, ((x − e2)(x − e3))−1)Q(X), and here
we can indeed substitute (e1, 0) to get an algebra over Q. So it seems that, just as
with rational functions, it is sometimes possible to extend the domain of definition
by writing the algebra in a different way.

In the previous example we replaced our algebra by an isomorphic one in order
to evaluate it at a particular point. In general we will be interested in evaluating
not an algebra but a class in Br k(X) at a point of X, so we can replace our algebra
by an equivalent one if necessary.
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As it stands, our idea of “evaluating” at a point P ∈ X is unsatisfying because it
seems to rely on an evaluation homomorphism k(X)→ k(P ), which of course does
not exist. The way to understand this correctly for rational functions is to use the
local ring at P . The ring OX,P ⊂ k(X) consists of those functions which are defined
at P , and there is an evaluation homomorphism OX,P → k(P ). To apply the same
idea to evaluating Brauer group elements, we must define the Brauer group of the
local ring OX,P .

Definition 3.3. Let R be a local ring with maximal ideal m. An Azumaya algebra
over R is a free R-algebra A such that A/mA is a central simple algebra over the
field R/m. Two Azumaya algebras A,B over R are equivalent if there exist m,n > 0
such that A⊗R Mm(R) and B ⊗R Mn(R) are isomorphic. The Brauer group of R
consists of the equivalence classes of Azumaya algebras over R, under the operation
of tensor product over R.

If R has field of fractions K, then there is a natural map BrR→ BrK given by
sending an Azumaya algebra A to the central simple algebra A ×R K. Auslander
and Goldman proved that, if R is a regular local ring, then BrR → BrK is an
injection [1, Theorem 7.2].

Now let P be a point of a smooth variety X over a field k. The ring OX,P is
regular, so we can regard BrOX,P as a subgroup of Br k(X). If a class A ∈ Br k(X)
lies in BrOX,P , then we can use the natural map BrOX,P → Br k(P ) to evaluate
A at P . (This evaluation does indeed coincide with the näıve notion used above.)

We would like BrX to consist of elements of Br k(X) that can be evaluated at
all points of X, so it makes sense to define BrX as follows.

Definition 3.4. Let X be a smooth variety over a field k. The Brauer group of X
is the group

BrX =
⋂
P∈X

BrOX,P ,

the intersection being taken inside Br k(X).

Note that the intersection here is over all scheme-theoretic points of X, though
it is straightforward to show that one may equivalently take all closed points. (If a
point P is a specialisation of another point Q, then we have OX,P ⊂ OX,Q ⊂ k(X)
and therefore BrOX,P ⊂ BrOX,Q ⊂ Br k(X).)

This definition of the Brauer group has the merit of being fairly elementary.
Another common definition of the Brauer group is that it is the étale cohomology
group H2

ét(X,Gm); this is useful if one wants to use the powerful tools of étale
cohomology to study the Brauer group. In the case of a smooth, projective variety,
the two definitions coincide: this follows from a difficult result of Gabber, of which
an alternative proof was given by de Jong [9].

3.2. An example of the Brauer–Manin obstruction. Now that we have de-
fined the Brauer group of a variety, we are in a position to use the Brauer–Manin
obstruction to explain the counterexample to the Hasse principle given in Exam-
ple 1.6.

Let C be the curve 2Y 2 = X4 − 17Z4 as before. We will use the quaternion
algebra A = (17, Y/X2) ∈ BrQ(C), which actually lies in BrC. Note that A is
isomorphic to the algebra (17, Y/Z2) so we may use whichever representation is
more convenient.

To evaluate the Brauer–Manin obstruction, we must compute the value of the
invariant invv A(Pv) for every place v and every point Pv ∈ X(Qv). We look at the
places individually.
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If 17 is a square in Qv, then we have invv A(Pv) = 0 for all Pv ∈ X(kv). As long
as either Y/X2 or Y/Z2 is invertible at Pv, we can see this by first substituting
the coordinates of P into one of the expressions for A and seeing that the resulting
quaternion algebra is trivial over kv. However, we can also see this more efficiently
by noting that the evaluation map BrC → Br kv factors through Br(C ×k kv), and
that A is zero in this group since 17 is a square in the function field kv(C). Note
that this case includes the places 2 and ∞.

If v = p is an odd prime other than 17, and 17 is not a square in Qp, then
we proceed as follows. Any point Pv of X(Qp) can be written as (x, y, z) with
x, y, z ∈ Zp not all divisible by p. If p were to divide y, then looking at the equation
modulo p shows that 17 would be a square modulo p, which is not true; so p does not
divide y. It follows that at least one of y/x2 and y/z2 is a unit in Zp. The extension

Qp(
√

17)/Qp is unramified, so every unit in Zp is a norm from this extension, giving
invv A(Pv) = 0.

Finally, take v = 17 and let P = (x, y, z) be a point of C(Q17). Again we may
assume that x, y, z lie in Z17. If, say, x is divisible by 17, then looking modulo 17
shows 17 | y, but then 172 | 17z4 and so 17 | z, a contradiction. So x is not divisible
by 17, and similarly neither is y. Now looking modulo 17, and using the fact that 2
is not a fourth power in F17, shows that y is not a square modulo 17. The elements
of Z×17 that are norms from Q17(

√
17) are precisely those which are square modulo

17, so we deduce inv17A(P ) = 1
2 .

To summarise, we have found inv17A(P ) = 1
2 for all points P ∈ C(Q17), and

invv A(Pv) = 0 for all v 6= 17 and Pv ∈ C(Qv). Therefore, for all (Pv) ∈ C(AQ),
we have

∑
v invv A(Pv) = 1

2 and therefore C(AQ)Br = ∅, showing that there is a
Brauer–Manin obstruction to the Hasse principle on C.

Remark 3.5. The ingredients for computing the Brauer–Manin obstruction on C
were exactly the same as the ingredients in our earlier proof that C has no rational
point.

3.3. Brauer groups of some varieties. Here we collect some facts about Brauer
groups of varieties.

If k is algebraically closed, then we have Br(Pnk ) = 0 for all n, and also Br(C) = 0
for every curve C over k. (The latter follows from Tsen’s theorem that Br k(C) is
a C1 field and so has trivial Brauer group.) If X is a smooth proper variety over
an algebraically closed field k of characteristic zero, then BrX contains (Q/Z)b2−ρ,
where b2 is the second Betti number of X and ρ is the rank of the Néron–Severi
group of X.

Over any field k of characteristic zero, the Brauer group is a birational invariant
of proper smooth varieties: if X and Y are birational proper smooth varieties, then
BrX and BrY are isomorphic.

Let X be a smooth, proper, geometrically irreducible variety over a field k. Let X̄
denote the base change of X to a separable closure of k. We define some subgroups
of BrX.

• The subgroup Br0X = im(Br k → BrX) consists of the “constant” ele-
ments. (Beware: the homomorphism Br k → BrX is not necessarily injec-
tive, though it is if X has a k-point.)

• The subgroup Br1X = ker(BrX → Br X̄) consists of the “algebraic” ele-
ments, that is, those that become trivial after a finite extension of the base
field k. (This clearly contains Br0X.)

• The quotient BrX/Br1X ∼= im(BrX → Br X̄) is called the “transcenden-
tal” Brauer group of X.
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Putting these facts and definitions together allows us to make some new state-
ments, such as: if X is a geometrically rational variety, then Br X̄ is trivial and so
Br1X is the whole of BrX.

Let X be smooth, proper and geometrically irreducible over k. A very useful cal-
culation, coming from the Hochschild–Serre spectral sequence in étale cohomology,
is the existence of the following exact sequence of Galois cohomology groups:

0→ PicX → H0(k,Pic X̄)→ Br k → Br1X → H1(k,Pic X̄)→ H3(k, k̄×).

If k is a number field, then we have H3(k, k̄×) = 0 and so an extremely useful
isomorphism

(3.1) Br1X/Br0X ∼= H1(k,Pic X̄).

Supposing that Pic X̄ is finitely generated and torsion-free (for example, X is a
rational surface or a K3 surface), the group H1(k,Pic X̄) is finite and can easily
be computed explicitly. Inverting the isomorphism to obtain explicit elements of
Br1X is more challenging, but in practice can be done in many examples.

Note that elements of Br0X give no Brauer–Manin obstruction, and the ob-
struction given by A ∈ BrX depends only on the class of A modulo Br0X, so in
practice we are usually interested in the quotient BrX/Br0X.

3.4. Residue maps. Let X be a smooth variety over a field k. Given an element
of Br k(X), how can one tell whether it lies in BrX? The corresponding question
for rational functions has a pleasing answer: a rational function is regular if and
only if it has trivial valuation along every prime divisor of X. In this section we
describe the corresponding result for Brauer groups. The first aim is to define a
residue map for each prime divisor.

Let R be a discrete valuation ring with maximal ideal m, field of fractions K and
perfect residue field F .

Theorem 3.6. There is a homomorphism ∂ : BrK → H1(F,Q/Z) whose kernel is
precisely BrR.

The homomorphism ∂ is called the residue map associated to the DVR R.
We briefly describe the construction of the residue map. Firstly, assume that

K is complete. It can be shown that every element of BrK is split by some finite
unramified extension of K. Letting Knr be the maximal unramified extension of
K, this shows that the natural map BrK → BrKnr is the zero map; the inflation-
restriction sequence in Galois cohomology (together with Hilbert’s Theorem 90)
gives an exact sequence

0→ H2(Knr/K, (Knr)×)→ BrK → BrKnr,

showing that H2(Knr/K, (Knr)×)→ BrK is an isomorphism.
The valuation map on K extends to a homomorphism (Knr)× → Z. This induces

a homomorphism

H2(Knr/K, (Knr)×)→ H2(Knr/K,Z) ∼= H2(F,Z) ∼= H1(F,Q/Z).

The first isomorphism comes from the isomorphism Gal(Knr/K) ∼= Gal(F̄ /F ),
because K is complete, and the second from the boundary map in the long exact
sequence in cohomology coming from 0 → Z → Q → Q/Z → 0. This composition
is the residue map.

If K is not complete, let K̂ be its completion, and define the residue map via
the natural map BrK → Br K̂.

Remark 3.7. When K is a finite extension of Qp, there is a canonical isomorphism
H1(Fq,Q/Z)→ Q/Z given by evaluation at the Frobenius element. Composing the
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residue map with this isomorphism gives the Hasse invariant map inv (and indeed
is often given as the definition of the invariant map).

Remark 3.8. The condition that the residue field be perfect is essential. For exam-
ple, take K = Q2(t) with the 2-adic valuation, with residue field F = F2(t). The
quaternion algebra (2, t) has no splitting field that is unramified over K; of the

two obvious ones, K(
√

2) is wildly ramified, and K(
√
t) is even worse, inducing an

inseparable extension of F .

Returning to the case of a smooth variety X over a field k of characteristic zero,
we can apply Theorem 3.6 to the local ring at every prime divisor and so obtain,
for each prime divisor D ⊂ X, a residue map ∂D : Br k(X)→ H1(k(D),Q/Z). One
reason that these residue maps are so useful is the purity theorem.

For A ∈ Br k(X), define the ramification locus of A to be the set

{P ∈ X | A /∈ BrOX,P }.

This is a proper closed subset of X: one way to see this is to use the isomorphism
A⊗k(X) Aop → Endk(X)A, and show that set of points where it fails to specialise
to an isomorphism is given by the vanishing of a determinant.

Theorem 3.9 (Purity theorem, Grothendieck, first form). Let X be a smooth
variety over a field k of characteristic zero. For A ∈ k(X), the ramification locus
of A is either empty or of pure codimension 1 in X.

This allows us to give the following alternative description of the Brauer group
of X:

BrX =
⋂
D

BrOX,D,

where the intersection is over all prime divisors D on X.
Using Theorem 3.6, we can give a second form of the purity theorem:

Theorem 3.10 (Purity theorem, second form). Let X be a smooth variety over a
field k of characteristic zero. The following sequence is exact:

0→ BrX → Br k(X)
⊕D∂D−−−−→

⊕
D

H1(k(D),Q/Z),

where D runs over all prime divisors on X.

Note that the map ⊕D∂D does indeed land in the direct sum: for each element
A ∈ Br k(X), we can have ∂D(A) 6= 0 only for the finitely many divisors D lying
in the ramification locus of A.

Remark 3.11. The result also holds in positive characteristic, as long as one restricts
attention to the prime-to-p torsion in the Brauer group.

Remark 3.12. If D is itself smooth and A is unramified away from D, that is, A
lies in Br(X \D), then one can show that the residue ∂D(A) lies in the subgroup
H1(D,Q/Z) ⊂ H1(k(D),Q/Z).

4. Local solubility in families

In this section we turn our attention from individual varieties to families of vari-
eties. The aim is to understand results such as those of Loughran and Smeets [15]
which relate the number of everywhere locally soluble varieties in a family to the
geometry of the family.
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4.1. Introduction. Let k be a number field. By a “family of varieties” over k we
mean a smooth, projective, irreducible variety X over k equipped with a dominant
morphism π : X → Pnk , such that the generic fibre of π is geometrically irreducible.
(This condition ensures that the other fibres of π will also be geometrically irre-
ducible outside a proper closed subset of the base.) We think of X as a family of
varieties in the sense that every P ∈ Pn(k) gives a k-variety XP = π−1(P ).

Example 4.1. Take the ambient space P2
k×P2

k with coordinates (x0, x1, x2) on the
first factor and (a0, a1, a2) on the second factor. Let the subvariety X be defined
by the equation a0x

2
1 + a1x

2
1 + a2x

2
2 = 0. If we take π to be the projection to the

second factor, restricted to X, then we obtain a family of varieties in which every
P = (a0 : a1 : a2) ∈ P2(k) corresponds to the plane conic defined by the equation
above.

The main question in this section will be: given such a family of varieties, how
many of the varieties are everywhere locally soluble, that is, for how many of the
points P ∈ Pn(k) do we have XP (Ak) 6= ∅? As it stands, this question does not
make much sense: there are infinitely many points P ∈ Pn(k), and in most cases
infinitely many of the corresponding XP will be everywhere locally soluble. To turn
the question into a more precise one, we use the standard height on Pn(k).

In the case k = Q, we can define the height of a point P ∈ Pn(Q) as follows:
write P = (a0 : · · · : an) with a0, . . . , an coprime integers, and define the height
to be H(P ) = max{|a0|, . . . , |an|}. In the case of a more general number field, we
may not be able to write a point using coprime integers, so we use the more general
definition

H((a0 : · · · : an)) =
∏
v∈Ωk

max{|a0|v, . . . , |an|v}.

It is an easy but worthwhile exercise to check that this gives the same answer as
above in the case k = Q.

Given a family π : X → Pn as above, we now define for B > 0

Nloc(B) = #{P ∈ Pn(k) | H(P ) ≤ B and XP (Ak) 6= ∅}.
The aim is to compare this to the total number of points of height at most B,

Ntot(B) = #{P ∈ Pn(k) | H(P ) ≤ B}.
A precise asymptotic for Ntot(B) is given by the following theorem of Schanuel.

Theorem 4.2 (Schanuel). Let k be a number field. Let h be the class number
of k, ζk the zeta function of k, r1 and r2 the numbers of real and complex places
respectively, r = r1 + r2 − 1 the rank of the unit group, R the regulator, ∆ the
discriminant, w the number of roots of unity in k. Then we have

Ntot(B) ∼ h

ζk(n+ 1)

(2r1(2π)r2√
|∆|

)n+1R

w
(n+ 1)rB(n+1)

(See Serre [22, Section 2.5]; the version stated there has B(n+1)[k:Q] instead of
Bn+1, but that is because it uses a different normalisation of the absolute values on
k.) The new question is: how does the ratio Nloc(B)/Ntot(B) behave as B → ∞?
Whenever we talk about a “proportion” of points in Pn(k) in future, it will be in
this sense.

Let us return to Example 4.1 and try to answer the simpler question of solubility
at just one place, beginning with solubility in R. For P = (a0 : a1 : a2), it is easy
to see that XP (R) is non-empty if and only if a0, a1, a2 do not all have the same
sign. This clearly happens for 3/4 of all triples a0, a1, a2 up to any given bound,
but let us try to explain this in terms of the measure of some subset of P2(R).
Temporarily, let a0, a1, a2 take values in R. If we scale (a0, a1, a2) to lie on the unit
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sphere (which is compact), then the two octants making up the points for which
the corresponding conic is soluble make up precisely 3/4 of the surface area of the
sphere. For any B > 0, the points of P2(Q) of height ≤ B are evenly distributed
on the unit sphere in the sense that equal numbers lie in each octant, so precisely
3/4 correspond to soluble fibres. Of course we should really be working in P2(R),
which is the quotient of the unit sphere by the antipodal map.

For a more general family of varieties, it is not reasonable to expect the pro-
portion of points of height at most B having soluble fibres to be independent of
B; but the fact that Pn(Q) is equidistributed in Pn(R) as B →∞ means that the
proportion of soluble fibres does tend to the ratio calculated using the measure of
the relevant part of Pn(R).

If we now turn to looking at solubility at an odd prime p, the situation is more
complicated but the same basic idea applies. Let (a0 : a1 : a2) be a point of
P2(Qp), scaled so that a0, a1, a2 lie in Zp and are not all divisible by p. What are
the conditions on (a0, a1, a2) for a0x

2
0 + a1x

2
2 + a2x

2
2 to be soluble in Qp?

If none of the ai are divisible by p, then the equation is soluble: the Chevalley–
Warning theorem [20, Chapter I, Section 2, Theorem 3] shows that there is a
solution over Fp, which lifts by Hensel’s Lemma.

If, say, vp(a0) = 1 but p does not divide a1a2, then the solubility depends on
whether a1x

2
1 + a2x

2
2 has a non-zero solution modulo p, which happens if and only

if −a1a2 is a square in Fp.
The other cases look more complex but can be reduced to these by transforma-

tions: for example, if p2 divides a0 then substituting x0 7→ px0 shows that this
equation is soluble if and only if that corresponding to (a0/p

2 : a1 : a2) is sol-
uble. By keeping track of the effect of these transformations on the measure on
P2(Qp) we can produce an explicit expression for the proportion of P2(Qp) corre-
sponding to fibres soluble in Qp. Using the fact that points of P2(Q), ordered by
height, are equidistributed in P2(Qp) shows that this is also the proportion of P2(Q)
corresponding to fibres locally soluble in Qp.

So the proportion of varieties in our family that are locally soluble at one given
place can be computed as the measure of some set. What about the proportion that
are locally soluble at all places? This particular example was studied by Serre [21,
Exemple 3].

Theorem 4.3 (Serre). For the family of Example 4.1, we have

Nloc(B)� B3

(logB)3/2
.

In particular, Nloc(B)/Ntot(B) tends to 0 as B →∞.

On the other hand, there are families of varieties such that the ratio is positive.

Theorem 4.4 (Bright, Browning, Loughran [6]). Let X ⊂ P3 × P3 be the family
of varieties over Q defined by

a0x
3
0 + a1x

3
1 + a2x

3
2 + a3x

3
3 = 0.

Then the ratio Nloc(B)/Ntot(B) tends to approximately 0.86 as B →∞. Moreover,
this limit is a product

∏
v∈Ωk

cv, where cv is the proportion of varieties in the family
that are soluble over Qv.

Theorem 4.5 (Poonen, Voloch [17]). Fix positive integers n, d ≥ 2 satisfying
(n, d) 6= (2, 2). For the family of all hypersurfaces of degree d in Pn, the ra-
tio Nloc(B)/Ntot(B) tends to a limit c > 0 as B → ∞. Moreover, we have
c =

∏
v∈Ωk

cv, where cv is the proportion of varieties in the family that are sol-
uble over Qv.
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What is the qualitative difference between the two types of behaviour?

4.2. Bad reduction and local solubility. At the root of the relationship between
geometry and local solubility of varieties is the result of Lang–Weil (Theorem 1.3)
which implies, approximately, that a geometrically irreducible variety over a suffi-
ciently large finite field must have a point.

In the case of a scheme with several components, we of course only need one
component to be geometrically irreducible in order to apply the Lang–Weil theorem.
Skorobogatov made the following definition.

Definition 4.6. A scheme of finite type over a field is split if it contains a geomet-
rically integral open subscheme.

Equivalently, a scheme of finite type over a field is split if and only if it has an
irreducible component that is geometrically irreducible and has multiplicity 1. This
concept turns out to be very useful in studying the local solubility of families of
varieties.

Let us look at the two contrasting examples from above, the diagonal cubic
surfaces and the plane conics.

Example 4.7. Let X ⊂ P3 × P3 be the family of varieties over Q defined by

a0x
3
0 + a1x

3
1 + a2x

3
2 + a3x

3
3 = 0.

Let D ⊂ P3 be the divisor defined by a0 = 0, and let d be the generic point of
D. The fibre Xd is the variety in P3 over the field Q(a1/a3, a2/a3) defined by the
equation

(a1/a3)x3
1 + (a2/a3)x2

2 + x3
3 = 0.

Since the variable x0 does not appear in the equation, this variety is a cone over a
smooth cubic curve, with the vertex of the cone at (1 : 0 : 0 : 0). In particular, it
is geometrically irreducible and therefore split.

Suppose that P = (a0 : a1 : a2 : a3) ∈ P3(Q) satisfies a0a1a2a3 6= 0, with
a0, a1a2, a3 coprime integers, and that p is an odd prime dividing a0. Then the
reduction of P modulo p lands in the divisor D. Assuming this happens in a
sufficiently generic way (that is, p2 - a0 and p - a1a2a3), then the reduction of XP

modulo p looks exactly like the fibre Xd, that is, a cone over a smooth cubic curve.
If p is sufficiently large, then Lang–Weil implies that there is a smooth point on the
reduction of XP modulo p, and therefore XP (Qp) 6= ∅.

Example 4.8. Let X ⊂ P2 × P2 be the family of varieties from Example 4.1,
defined by

a0x
2
0 + a1x

2
1 + a2x

2
2 = 0.

As before, let D ⊂ P2 be the divisor defined by a0 = 0 and let d be the generic
point of D. The fibre Xd is the variety in P2 over the field K = Q(a1/a2) defined
by

(a1/a2)x2
2 + x2

3 = 0.

This is not split: geometrically, it is the union of two lines, conjugate over the
extension field K(

√
−a1/a2).

Now suppose that P = (a0 : a1 : a2) ∈ P2
Q satisfies a0a1a2 6= 0, with a0, a1, a2

coprime integers, and that p is an odd prime dividing a0. As before, the reduction
modulo p of P lands in D. The fibre XP is smooth and, generically, its reduction
modulo p looks geometrically like the fibre Xd. This doesn’t mean that it is non-
split, though: the two lines are defined over Fp(

√
−a1/a2), so this variety is split

if and only if −a1/a2 is a square in Fp. This happens for half of all odd primes p.
In this case we find that X(Qp) is non-empty only half the time, depending on the
prime p.
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The message from these two contrasting examples is that the geometry of the
fibre Xd at the generic point of a divisor D in the base, and in particular whether it
is split, strongly affects the local solubility of fibres XP for P ∈ Pn(k) that land in
D modulo some prime. The two obvious questions this raises are: how often does
a point P land in a given divisor D modulo some prime? And do we need to look
only at divisors in the base, or also subvarieties of higher codimension?

The answer to the second question is that it turns out to be enough to look at
the behaviour above divisors in the base. The answer to the first question is that,
very often, a point P ∈ Pn(k) lands in a given divisor D ⊂ Pn modulo some prime.
After all, in our examples, the only way that a0 can avoid being divisible by any
odd prime is for a0 to be plus or minus a power of 2. (We also need the extra
conditions p2 - a0 and p - a1a2a3, but it can be shown that these also hold 100% of
the time.)

4.3. The results of Loughran and Smeets. Quantitative results using these
ideas relating bad reduction to local solubility have been proved by several authors,
most recently Loughran and Smeets [15], building on the technique of Serre [21]. To
distinguish the two cases seen in our examples, they defined an invariant associated
to a family of varieties π : X → Pn, as follows.

Firstly, let D ⊂ Pn be a prime divisor with generic point d. The fibre Xd is
a scheme over the field k(D); let L/k(D) be a finite Galois extension over which
all the geometrically irreducible components of Xd are defined. The Galois group
Γd = Gal(L/k(D)) acts on the set of components. Define

δD(π) =
#{γ ∈ Γd | γ fixes at least one multiplicity-1 component of Xd}

#Γd
.

Note that, if Xd is split, then there is a component fixed by all γ ∈ Γd, and therefore
we have δD(π) = 1. However, it is possible to have δD(π) = 1 without Xd being
split.

Now define

∆(π) =
∑
D

(1− δD(π)),

the sum being over all prime divisors of Pn. This sum is finite: since the generic
fibre of X is geometrically integral, there is a non-empty open set U ⊂ Pn above
which the fibres are geometrically integral, and so δD(π) can differ from 1 only for
the finitely many divisors D not contained in U .

Armed with this definition, they prove the following.

Theorem 4.9 (Loughran, Smeets [15]). Let π : X → Pn be a family of varieties
over a number field. Then we have

Nloc(B)� Bn+1

(logB)∆(π)
as B →∞.

In particular, if ∆(π) > 0 then 0% of the varieties in the family are everywhere
locally soluble.

For the family of Example 4.1, there are three divisors in the base, given by
{ai = 0} for i = 0, 1, 2, above which the fibre is not split. In each case there
are two components interchanged by the Galois action, giving δD(π) = 1

2 . We

therefore have ∆(π) = 1
2 + 1

2 + 1
2 = 3

2 , and the theorem agrees with that of Serre
(Theorem 4.3).

The proof of Theorem 4.9 makes use of the large sieve, a powerful tool for
bounding the size of a subset of Zn given conditions on its reduction modulo each
prime. See [22] for a description of the large sieve in this context.
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In the case ∆ = 0, the positive proportion of everywhere locally soluble varieties
is indeed a product of local densities:

Theorem 4.10 (Loughran, Smeets). Suppose that π : X → Pn satisfies ∆(π) = 0
and X(Ak) 6= ∅. Then the limit

lim
B→∞

Nloc(B)

Ntot(B)

exists, and is equal to the product of the corresponding local factors.

This theorem is proved using the sieve of Ekedahl, a sort of infinite version of
the Chinese remainder theorem going back to Ekedahl and developed by various
authors; see [6, Section 3] for more information.

5. The Brauer–Manin obstruction in families

In the previous section, we used ideas about bad reduction of varieties in families
to prove results about local solubility. In this section, we use similar techniques to
prove results about the Brauer–Manin obstruction. The rough idea of the conclusion
is this: given a family of varieties and a generic element of the Brauer group, then
on most fibres it gives an obstruction to weak approximation but no obstruction to
the Hasse principle.

5.1. Bad reduction and the Brauer–Manin obstruction. The results in this
section come from [4]. We begin with a number field k and a smooth, proper,
geometrically irreducible variety Y over k. Fix a place v of k, let Ov be the ring
of integers in the completion kv and let Fv be the residue field, of characteristic
p. Let Yv be the base change of Y to kv, and choose a model Y/Ov of Y . The
special fibre Y0 = Y ×Ov Fv is a variety over Fv, the “reduction of Y modulo v”.
For what follows, we assume that Y0 is smooth and geometrically irreducible, but
not necessarily proper. For example, starting from any model with geometrically
integral special fibre, we can form such a model by removing the singular locus of
the special fibre.

The special fibre Y0 is a prime divisor on the regular scheme Y, with Yv = Y \Y0,
so there is a residue map

∂ : BrYv(p
′)→ H1(Y0,Q/Z)(p′),

where (p′) denotes the prime-to-p part of a torsion Abelian group. Now let P ∈
Yv(kv) be a point that reduces to a point P0 ∈ Y0(Fv). (Since Y is not proper over
Ov, there may be points of Yv(kv) that “miss” the special fibre and don’t reduce
to points of Y0(Fv), but we assume that P is not one of those.) The residue map
behaves in a functorial way, and we get a commutative diagram

BrYv(p
′) H1(Y0,Q/Z)(p′)

Br kv H1(Fv,Q/Z) Q/Z

∂

P P0

where the maps in the bottom row are isomorphisms and their composition is the
invariant map invv: see Remark 3.7. From this diagram we immediately deduce the
following: for A ∈ BrYv and P ∈ Yv(kv) reducing to P0 ∈ Y0(Fv), the evaluation
A(P ) depends only on ∂A and on P0. The problem of trying to understand the
map Y (kv) → Br kv given by evaluating A is determined entirely on the special
fibre Y0.



RATIONAL POINTS IN FAMILIES OF VARIETIES 17

Example 5.1. Take k = Q, v = p odd, let Y be a variety over Q and suppose that
the quaternion algebra A = (p, f)Q(Y ) happens to lie in BrY . What is the class

∂(A) ∈ H1(Y0,Q/Z)? It will have order 2, so will be represented by some Galois
2-covering Z → Y0.

Perhaps unsurprisingly, it turns out that Z is the 2-covering given by the equation
t2 = f̄ , where f̄ ∈ Fp(Y0) is the reduction modulo p of the function f . (This
equation doesn’t work very well at points where f̄ has a zero or a pole, but the
condition that A lie in BrY means that the divisor (f̄) is a multiple of 2, and so we
can always multiply f by a square to obtain an equation that works at any given
point.)

Take a point P ∈ Yv(kv) reducing to P0 ∈ Y0(Fp). Assume f̄(P0) 6= 0. A
standard calculation for the Hilbert symbol (see [20, Chapter 3, Theorem 1]) gives

invpA(P ) = invp(p, f(P )) =

{
0 if f̄(P0) ∈ (F×p )2;
1
2 otherwise.

So we see that indeed the invariant is determined by P0 and by f̄ , that is, by ∂(A).
We can use this explicit description to make a further argument. The variety

Z → Y0 is geometrically irreducible if and only if f̄ does not become a square in
F̄p(Y0). In this case, the Lang–Weil theorem shows that, if p is sufficiently large,
then Z(Fp) is non-empty. Looking at the equation defining Z, this means that there
are points P0 ∈ Y (Fp) such that f̄(P0) is a square in Fp. On the other hand, let
a ∈ F×p be a non-square; then the “twisted” variety Z ′ defined locally by at2 = f̄

also has Fp-points, so there are also points P0 ∈ Y (Fp) such that f̄(P0) is a non-
square in Fp. Putting this together shows that the evaluation map Yv(kv)→ Q/Z
given by P 7→ invpA(P ) takes both values 0 and 1

2 .
Finally, we can deduce something about the Brauer–Manin obstruction on Y .

Let (Pv) ∈ Y (AQ) be an adelic point of Y , and consider the sum
∑
v invv A(Pv).

Each term in this sum is either 0 or 1
2 , and we have shown that the term at v = p

can take either value. It follows that
∑
v invv A(Pv) takes both values 0 and 1

2 on
Y (AQ). We therefore have

∅ 6= Y (AQ)Br ( Y (AQ)

and so there is a Brauer–Manin obstruction to weak approximation of Y , but no
Brauer–Manin obstruction to the Hasse principle.

In the above example, a very explicit argument allowed us to show that a certain
element of the Brauer group of a variety obstructs weak approximation but not the
Hasse principle. We would like to generalise this argument.

Firstly, note that constant algebras (elements of Br0 Y ) can intervene to com-
plicate arguments like that above. In the example, we had an element A of order
2 in BrY , and we showed that invv A(Pv) took both possible values in Q/Z[2] for
Pv ∈ Y (kv). If we change A by adding an element of large order in Br0 Y , then
the order of Y becomes large but the image of the evaluation map does not get any
larger: rather, it is translated by a constant. To compensate for this, we can fix a
base point Pv ∈ Y (kv) and instead consider the map Qv 7→ invv A(Qv)−invv A(Pv),
which is insensitive to changing Y by a constant algebra.

With this in mind, we make the following definition.

Definition 5.2. Let Y be a variety over k, let v be a place of k, and fix a point
Pv ∈ Y (kv). A class A ∈ BrY/Br0 Y of order n is prolific at v if the map

Y (kv)→
1

n
Z/Z

Qv 7→ invv A(Qv)− invv A(Pv)
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is surjective.

Note that the definition is independent of the representative A chosen, and
independent of the point Pv.

An easy argument similar to that used in the example shows that, if A is prolific
at any place v, then A gives an obstruction to weak approximation on Y but no
obstruction to the Hasse principle.

However, an obstruction to the Hasse principle can be given by more than one
algebra, so we would also like to be able to work with any finite subgroup of
BrY/Br0 Y . The following definition generalises the previous one.

Definition 5.3. Let Y be a variety over k, let v be a place of k, and fix a point
Pv ∈ Y (kv). A finite subgroup B ⊂ BrY/Br0 Y is prolific at v if the map

Y (kv)→ Hom(B,Q/Z)

Qv 7→ (A 7→ invv A(Qv)− invv A(Pv))

is surjective.

Another similar argument shows that, if B is prolific, then B gives an obstruction
to weak approximation but no obstruction to the Hasse principle. Sometimes it can
be useful to use variations of these definitions working at more than one place of
k: see [5, Section 2].

In Example 5.1 we began with an algebra (p, f) and, under the assumption that
f̄ was not square over F̄p, proved that the algebra was prolific at p. A more general
argument is as follows. Going back to the notation of the beginning of this section,
let F̄v be an algebraic closure of Fv and let Ȳ0 be the base change of Y0 to F̄v.
Define ∂̄ to be the composition

(5.1) BrYv(p
′)

∂−→ H1(Y0,Q/Z)→ H1(Ȳ0,Q/Z).

Suppose that A ∈ BrYv has order n in BrYv/Br0 Yv; then the torsor corresponding
to ∂(A) is geometrically irreducible if and only if ∂̄ has order n in H1(Ȳ0,Q/Z). If
this condition holds, then an argument using Lang–Weil shows that A is prolific at
v assuming that Fv is large enough. More generally, if B ⊂ BrYv/Br0 Yv is such
that ∂̄ is injective on B, and Fv is large enough, then B is prolific at v. See [4,
Section 5] for precise statements.

5.2. The Brauer–Manin obstruction in families. In this section, we combine
the results of the previous section with the ideas of Section 4 to study how the
Brauer–Manin obstruction varies in a family of varieties. Again, the idea is to relate
what happens at singular fibres of the family to the bad reduction of individual
smooth varieties in the family.

Let π : X → Pn be a family of varieties over a number field k, as in Section 4.
Let K be the function field of Pn and let η : SpecK → Pn be the generic point. We
will start with an element of the generic fibre BrXη and see what happens when it
is specialised to the different BrXP for P ∈ Pn(k).

First let us think about ramification of an element of BrXη. Prime divisors on
X are of two kinds: horizontal prime divisors Z, satisfying π(Z) = Pn, and vertical
prime divisors Z, for which D = π(Z) is a prime divisor on Pn. Restricting to the
generic fibre gives a bijection between the horizontal prime divisors on X and the
prime divisors on Xη. Applying the purity theorem (Theorem 3.10) to Xη shows
the following: an element A ∈ Br k(X) lies in BrXη if and only if ∂Z(A) is zero
for all horizontal prime divisors Z. Therefore such A ∈ BrXη are ramified only at
vertical prime divisors of X.
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Suppose that A ∈ BrXη is ramified at vertical divisors Zi (i = 1, . . . , r) and set
Di = π(Zi). For P ∈ Pn(k) not lying in any of the Di, we can specialise A to the
fibre XP and obtain an element of BrXP .

From now on, suppose that the fibres of π above codimension-one points of Pn
are geometrically irreducible; in that case, we have Zi = π−1(Di) in the above
notation.

Let D be a prime divisor on Pn, with generic point d. The fibre Zd = Xd is
the generic fibre of the morphism Z → D, and is a variety over the field k(d). Fix

an algebraic closure k(d) of k(d) and let d̄ : Spec k(d) → Pn be the corresponding
geometric point. The base change Zd̄ is then a variety over the algebraically closed

field k(d) = k(d̄). As in the previous section, we define a homomorphism ∂̄Z to be
the composition

BrXη
∂Z−−→ H1(k(Z),Q/Z)→ H1(k(Zd̄),Q/Z).

Now let P ∈ Pn(k) be a point, and suppose that P lands in the divisor D modulo
some place v of k. That is, if we let P0 and D0 be the reductions of P and D,
respectively, modulo v, then P0 lies in D0. Let p be the residue characteristic of
v. As in the previous section, if we assume that everything is sufficiently generic,
then the fibre Y = XP will be a smooth variety over k whose reduction Y0 modulo
v looks geometrically like Zd̄. After maybe removing some singular locus of Y0, it
can be proved that there is a commutative diagram

BrXη(p′) H1(k(Zd̄),Q/Z)(p′)

BrY (p′) H1(Ȳ0,Q/Z)(p′)

∂̄Z

∂̄

in which the bottom row is the homomorphism of (5.1). (The vertical dashed
arrow is the specialisation map, not defined everywhere, but OK on the image of
BrXη.) Let A|Y denote the restriction of the algebra A to Y . Suppose that ∂̄Z(A)
is represented by an irreducible torsor over Zd̄; the torsor representing ∂̄(A|Y ) is a
specialisation of that, so will also be irreducible if P0 lies sufficiently generically in
D0. Then the results of the previous section can be brought in to show that A|Y
is prolific at v and therefore gives an obstruction to weak approximation on Y , but
no obstruction to the Hasse principle.

The relevant quantitative question is now as follows. Fix A ∈ BrXη, and fix a
prime divisor D ⊂ Pn such that ∂̄Z(A) is non-zero, where Z is the vertical prime
divisor on X lying above D. How many points P ∈ Pn(k) have the property that
XP is smooth, and there exists a place v of k such that P lands in D modulo v in a
sufficiently generic way? We would also like the residue characteristic not to divide
the order of A. This is the same counting problem as in the previous section, and
again application of the large sieve shows that the number of P of height at most
B failing to satisfy this condition is � Bn+1/ logB.

Assuming that such an A exists, this argument shows that 100% of smooth
varieties in the family have a Brauer–Manin obstruction to weak approximation.
In general there may be non-zero A ∈ BrXη that satisfy ∂̄Z(A) = 0 for all vertical
prime divisors Z: for example, this is true if A lies in the image of BrK → BrXη;
or if A extends to BrX; or if the family is constant and A is a non-zero constant
element of the Brauer group of the fibre. However, for many families of interest
these last two possibilities do not occur: for example, it often happens that the
total space X is k-rational, so that BrX is trivial. Imposing hypotheses to rule out
such uninteresting A, we obtain the following theorem.
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Theorem 5.4 (Bright, Browning, Loughran [6]). Let k be a number field and let
π : X → Pn be a flat, surjective k-morphism of finite type, with X smooth, projective
and geometrically integral over k. Let η : SpecK → Pn denote the generic point and
suppose that the generic fibre Xη is geometrically connected. Assume the following
hypotheses:

(1) X(Ak) 6= ∅;
(2) the fibre of π at each codimension 1 point of Pn is geometrically integral;
(3) the fibre of π at each codimension 2 point of Pn has a geometrically reduced

component;
(4) H1(k,Pic X̄) = 0;
(5) Br X̄ = 0;
(6) H2(k,PicPn

k̄
)→ H2(k,Pic X̄) is injective;

(7) BrXη/BrK 6= 0.

Then, for 100% of points P ∈ Pn(k) such that the fibre XP is smooth and everywhere
locally soluble, there is a Brauer–Manin obstruction to weak approximation on XP .

In fact, the theorem in [6] is rather more general, for the following reason. We
saw in (3.1) that, for a variety Y over a number field k, there is an isomorphism
Br1 Y/Br k → H1(k,Pic Ȳ ). However, for a variety over an arbitrary field, such
as our Xη, this homomorphism need not be surjective. When X is the family of
diagonal cubic surfaces mentioned in Theorem 4.4, Uematsu [25] has shown that
BrXη/BrK is trivial, whereas H1(K,PicXη̄) has order 3. In this case we are never
going to obtain interesting elements of the Brauer groups of fibres by specialising
elements of BrXη, but we can instead specialise elements of H1(K,PicXη̄), and in
this way we do obtain non-constant elements in the Brauer groups of the fibres. The
theorem of [6] in fact has, in place of condition (7) given above, the condition that
either BrXη/BrK or H1(K,PicXη̄) be non-zero. The proof is significantly more
complicated, since it requires a new definition of residue maps on H1(K,PicXη̄).

To finish, we mention a result which extends these methods to study the Brauer–
Manin obstruction to the Hasse principle, not just to weak approximation. Whereas
an obstruction to weak approximation on a variety Y can be proved by showing
that a single element of BrY is prolific at one place, using the same ideas to show
the absence of an obstruction to the Hasse principle requires showing that the whole
of BrY/Br k is prolific at some place or set of places.

In the context of a family of varieties, we have only been studying elements
of the Brauer groups of fibres XP that arise by specialising elements of BrXη or
H1(K,PicXη̄). To have any hope of proving absence of a Brauer–Manin obstruction
on a fibre XP , this specialisation homomorphism needs to be surjective. One case
in which is is true is when the Brauer groups in question are entirely algebraic,
that is, BrXη = Br1Xη. In this case, Harari [12] has proved that the specialisation
map H1(K,PicXη̄)→ H1(k,Pic X̄P ) is an isomorphism for P outside a thin set in
Pn(k), so for 100% of P . If we assume this hypothesis, the same methods as above
allow us to prove the following theorem.

Theorem 5.5 (Bright [5]). Let k be a number field and let π : X → Pnk be a flat,
surjective morphism of finite type, with X smooth, projective and geometrically
integral. Let η : SpecK → Pnk denote the generic point and η̄ : Spec K̄ → Pnk a
geometric point above η. Suppose that the geometric generic fibre Xη̄ is connected
and has torsion-free Picard group. Denote by X̄ the base change of X to an algebraic
closure k̄ of k. Assume the following hypotheses:

(1) X(Ak) 6= ∅;
(2) the fibre of π at each codimension-1 point of Pnk is geometrically integral;
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(3) the fibre of π at each codimension-2 point of Pnk has a geometrically reduced
component;

(4) H1(k,Pic X̄) = 0;
(5) Br X̄ = 0;
(6) H2(k,PicPn

k̄
)→ H2(k,Pic X̄) is injective.

(7) BrXη̄ = 0.

Then, for 100% of rational points P ∈ Pn(k) such that XP is smooth and everywhere
locally soluble, there is no Brauer–Manin obstruction to the Hasse principle on XP .
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[12] D. Harari. Méthode des fibrations et obstruction de Manin. Duke Math. J., 75(1):221–260,

1994.
[13] S. Lang and A. Weil. Number of points of varieties in finite fields. Amer. J. Math., 76:819–827,

1954.

[14] C.-E. Lind. Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom
Geschlecht Eins. Thesis, University of Uppsala,, 1940:97, 1940.

[15] D. Loughran and A. Smeets. Fibrations with few rational points. Preprint, arXiv:1511.08027,

2016.
[16] Yu. I. Manin. Le groupe de Brauer–Grothendieck en géométrie diophantienne. In Actes du
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