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1 Introduction

The aim of this article is to classify the various types of symmetry that a method
might possess. We start by defining a method and a symmetry, and then proceed
to list all possible types of symmetry which exist.

1.1 Definitions

A row on n bells is an element of the group of permutations of the set {1, . . . , n}.
A change on n bells is a permutation such that any bell moves at most one place:
that is, a permutation c is a change if |c(x) − x| ≤ 1 for all x from 1 to n. The
reverse of a change c, which we will write c̄, is defined to be τcτ , where τ is the
reversing permutation:

τ(x) = n + 1 − x.

A method is a finite sequence M = (c1, . . . , cm) of changes. We require that
the sequence not repeat: there is no non-zero integer k such that ci+k = ci for
all i. Two methods are said to be equivalent if they both consist of the same
sequence of changes, but possibly ‘rotated’ to start from a different point in the
sequence. That is, methods M = (ci) and M ′ = (c′i) are equivalent if they are
of the same length m, and there exists an integer k such that c′i = ci+k for all
i, where indices are taken modulo m.

1.2 What is a symmetry?

What do we mean by a symmetry of a method? A method is usually thought
of by some sort of representation in the plane, whether as a sequence of rows
or as a geometrical diagram of lines. We will imagine the method drawn out
vertically, with each row below the previous one. A line is drawn through the
path of each bell, and the numbers representing the rows are removed. The lead
is repeated over and over again, ad infinitum; so the resulting drawing forms a
vertical strip infinite in both directions. Now we may apply some geometry. The
notion of symmetry we use is that of an isometry of the plane which preserves
the method we have drawn. Such an isometry must certainly preserve the
vertical strip containing the method, and the group of these is generated by
three types of elements: vertical reflections (that is, reflections in a horizontal
line); horizontal reflections (in the vertical line which runs down the centre of
the strip) and vertical translations.
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With this in mind, we define the group G of method transformations which
we will consider when studying symmetry. An element of G acts on a method
to produce a new method. The group is generated by three elements:

• The vertical reflection V . If M = (ci), then V (M) = (c′i) where c′i = cm−i,
m being the length of the method M .

• The horizontal reflection H. If M = (ci), then H(M) = (c̄i).

• The translation T . Again, let M = (ci); then T (M) = (ci+1).

Here, as always, indices are taken modulo the length m of the method.
The structure of G is determined by the following rules, where I represents

the identity transformation:

• H2 = V 2 = I;

• HV = V H;

• HT = TH;

• V T = T−1V .

We can now define a symmetry of a method to be an element of G which
maps the method to itself. The symmetry group of a method is the subgroup of
G consisting of all symmetries of the method.

2 Classifying symmetries

Having defined the symmetry group of a method, we now go on to classify all
those subgroups of G which can occur as the symmetry group of some method.

We do not want to consider every subgroup of G as giving rise to a different
type of method symmetry group. For example, vertical reflection about the lead
end should be considered the same as vertical reflection about any other change
of the method: after all, these differ only by replacing the method with another
equivalent one. The appropriate algebraic notion is that we wish to classify the
subgroups of G up to conjugacy. In fact, it is easily seen that conjugating a
subgroup by either H or V leaves it unchanged; the only non-trivial conjugations
in G come from the translations, which arise precisely by replacing the method
with an equivalent one.

There is one more constraint on the symmetry group of a method: it can
never contain a non-trivial translation, that is, a non-trivial power of T . For,
if it does, then the method violates our definition above: the method is in fact
several leads of a shorter method.

2.1 Listing subgroups

The problem is now to list all the subgroups of G, not containing any non-trivial
translations, up to conjugacy.

Denote by G′ the subgroup of G generated by H and T . This subgroup is
of index 2 in G, and therefore normal. It is also Abelian. Now let S be any
subgroup of G. Then we denote by S′ the intersection of S with G′. Either
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this is the whole of S, or S′ is of index 2 in S. Therefore any subgroup S is
generated either by a set of generators for S′, or by a set of generators for S′

together with some element of G \ G′.
To list the subgroups of G containing no non-trivial translation, we will

perform the following steps:

1. List all subgroups S′ of G′ containing no non-trivial translation. Output
each such S′.

2. For each such S′, output S = S′.〈V y〉, where y runs through a set of
representatives for G′/S′ such that S contains no non-trivial translation.

For the first step, we note that, by the general theory of Abelian groups, S′

needs at most two generators. Neither of these generators may be a translation
T i for i non-zero; for then S′ would contain a translation. Therefore each
generator is of the form HT i for some non-zero i. But (HT i)2 = T 2i, so 2i
must divide m, the order of T . If m is odd, this demands that i be zero; if m is
even, we may also have 2i = m. We cannot have both H and HTm/2 in S′, for
then we also have Tm/2; so in fact S′ can only have one generator. We deduce:

Proposition 1. The possible subgroups S′ are:

{I}, {I,H} if m is odd;

{I}, {I,H}, {I,HTm/2} if m is even.

For the second step, we must list the suitable elements y. We are only inter-
ested in S up to conjugacy. Conjugating by H and by V both leave subgroups
unchanged; but conjugating by T replaces V T i with V T i+2. We are therefore
only interested in elements y = HjT i where i is considered modulo 2; so it is
enough to take y to be one of I, H, T or HT . The last two possibilities are
only necessary when m is even. This allows us to list all the possible symmetry
groups.

Proposition 2. The possible symmetry groups S of a method of length m are:

{I}
{I, V }

{I, V H},
{I,H}

{I,H, V, V H}

 if m is odd;

{I}
{I, V }

{I, V H}
{I, V T}

{I, V HT},
{I,H}

{I,H, V, V H}
{I,H, V T, V HT},

{I,HTm/2}
{I,HTm/2, V, V HTm/2},

{I.HTm/2, V T, V HT 1+m/2}



if m is even.
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Proof. To form this list, we take each subgroup S′ from Proposition 1. After
listing S = S′ by itself, we try adjoining each element V , V H, V T and V HT to
produce subgroups S. The case when m is odd is straightforward, as are those
when m is even and the subgroup S′ is either {I} or {I,H}.

When we take S′ = {I,HTm/2} and m even, there are four subgroups to
try. These are

S1 = {I,HTm/2, V, V HTm/2} S2 = {I,HTm/2, V T, V HT 1+m/2}
S3 = {I,HTm/2, V H, V Tm/2} S4 = {I,HTm/2, V HT, V T 1+m/2}.

Now different things happen depending on whether m is congruent to 0 or 2
modulo 4. If m is congruent to 0 modulo 4, then S1 is conjugate to S3 and S2

is conjugate to S4. If, on the other hand, m is congruent to 2 modulo 4, then
S1 is conjugate to S4 and S2 to S3. In either case, S1 and S2 between them
represent both possible conjugacy classes.

2.2 Listing the symmetries

Finally, we interpret these subgroups as symmetry types of methods. If the
length of the method is odd, the five possible symmetry types are:

• no symmetry;

• vertical symmetry;

• horizontal symmetry;

• rotational symmetry, as Winter Major;

• both vertical and horizontal symmetry.

If the length of the method is even, there are eleven possible symmetry types:

• no symmetry;

• vertical symmetry about a change, as Plain Bob;

• rotational symmetry about a change, as Anglia Cyclic Bob Major;

• vertical symmetry about a row †;

• rotational symmetry about a row;

• horizontal symmetry;

• horizontal and vertical symmetry about a change, as Mirror Bob;

• horizontal and vertical symmetry about a row †;

• ‘glide reflection’ symmetry, as Double Eastern Bob;

• vertical symmetry about a change, and rotational symmetry about a point
midway between the symmetry lines, as Bristol Surprise;

• vertical symmetry about a row, and rotational symmetry about a point
midway between the symmetry lines †.
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Note that several of these groups (those marked †) cannot possibly occur
as the symmetry group of a true method: for any method whose changes are
vertically symmetrical about a row must have two consecutive changes the same;
thus the method is false. However, these groups may still occur when studying
the symmetry of, say, the path of a single bell.
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